PAPER REF # 8019
Proceedings: Eighth International Space Syntax Symposium
Edited by M. Greene, J. Reyes and A. Castro. Santiago de Chile: PUC, 2012.

AUTHOR: Tao YANG
The Bartlett of Graduate Studies, University College London, United Kingdom
e-mail: t.yang@ucl.ac.uk

Bill HILLIER
The Bartlett of Graduate Studies, University College London, United Kingdom
e-mail: b.hillier@ucl.ac.uk

KEYWORDS: Spatial Network, Weibull Function, Embeddedness Trajectory, Part-whole
THEME: Architectural Theory and Spatial Analysis
Abstract

How is the spatial structure of a city organised at different scales, varying from connecting one street with its
neighbouring streets to aggregating all the streets into a well-structured city as a whole? In order to
approach this question, this paper seeks to investigate the sequence of the streets encountered at a series of
consecutive radii, from the point of view of any an individual street as a root space, termed as the
embeddedness trajectory in this paper. If we clarify such embeddedness trajectory on which each individual
street is progressively interconnected with all other streets with regards to its distance to them, this will
enable us to better understand the spatial structuring of the whole city, because a collection of the
embeddedness trajectories of all the streets of the city can illustrate the entire configuration of the city.
Based on the axial and segment representations of the empirical cases, it examines the mathematical
relation between node count at the radius of k (NC_Rk), measuring the accumulated number of the new
streets encountered up to the radius of k, and radius (Rk). The two-parameter Weibull relation seems to
approximate the variation of node count with an increase of radius, which is expressed by the formula of
NC_Rk ~ f(Rk; a, b), where ‘a’ is the scale parameter and ‘b’ is the shape parameter. Then, a strong linear
correlation is found between the parameter of ‘a’ and mean topological depth (or mean metric depth) at the
infinite radius, which suggests that as for each street, the number of the encountered streets up to a
constricted radius is influenced by the mean topological/metric depth from that street to all other streets in
the system. And meanwhile, the parameter of ‘b’ is correlated with the average embeddedness pace,
meaning the average change rate of node count across all the radii. Thus, as for each street, its
embeddedness trajectory is in general impacted on by the parameters of mean depth Rn and the
embeddedness pace. From the above analyses, it suggests two things: first, the spatial structuring of a city is
influenced by two spatial parameters: the average distance from all streets to all other streets and the
average change rate of node count from the local to the global; second, the spatial structuring of all the
parts of a city at the local and medium scales are constricted by the emergence of the whole structure —
arising from the local structuring - of the city at the global scale (measured by the infinite radius), which
supports Hillier’s theory of the emergence of urban structure (Hillier, 1996, 2001).
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INTRODUCTION

How is the spatial network of a city organised at different scales, varying from locally connecting one street
with its neighbouring streets to aggregating all the streets into a well-structured city as a whole? And how is
each individual street, as the root space, at first directly connected to its neighbouring spaces, and then
reach the further spaces via the neighbouring spaces, and so on until all other spaces within the whole
urban network are counted with regards to the distance to the root space? These two questions in fact are
related to each other, because when each street is progressively connected to all the other streets or
sequentially embedded into the whole network, in terms of its distance to all other spaces (which is termed
as the embeddedness trajectory in this paper), the whole spatial network and its various sub-networks are
created at once. In order to understand such embeddedness trajectory, this paper, based on the axial and
segment representations of several empirical cities or regions, investigates the mathematical relation
between the accumulated number of the new streets encountered up to the radius of k, namely node count
Rk, and the radius of k. The previous empirical studies suggested that node count Rk, given by the processed
axial or segment models, has the power-law relation with radius within several constricted radius ranges
(Yang & Hillier, 2007). And meanwhile, Park (2007) discovered that within the main radius rangel, 62% axial
lines of London have the power-law relation with radius, 26% lines have the exponential law and 12% lines
having the super power-law. However, is it possible to describe the embeddedness trajectory of each street
within the whole range of radius2 in a more general way? If so, can we indentify the spatial factors that
influence the whole embeddedness trajectory of each street? The answers to these questions would enable
us to better understand the spatial structuring of a city as a whole, and its relations to the local
configurational patterns.

THE TWO-PARAMETER WEIBULL LAW FOUND IN THE EMBEDDEDNESS TRAJECTORY

This paper began by conducting the empirical study on the axial maps of London3, the London Docklands,
the London Region within the M25 motorway, Beijing, Amsterdam and Chicago, in order to explore the
topological embeddedness trajectory. There are three reasons for selecting those cases. First, the axial map
of London, with 17,321 lines, mainly represents the historic central districts of London, the London
Docklands, with 28,226 lines, primarily demonstrates the newly developed districts in the East London, and
the M25, with 100,218 lines, comprises the central districts, the East London and other places, so that those
three axial maps show the different parts and scales of London. Second, London, Beijing (with 14,249 lines),
Amsterdam (with 8,768 lines) and Chicago (with 30,535 lines) were selected from the different regions of
the world and they have different urban development histories. Third, their system size (in terms of the
number of axial line) and the maximum radius — meaning the maximum topological distance between any
pair of axial lines — vary much (see Table 1). This enables us to establish some general results for the
topological embeddedness trajectory. As for each axial line as a root, it investigated the mathematical
relation between node count and topological radius, within the range of 1 to the radius at which all the
other axial lines are encountered in its outward growth from the root line. The radius discretely rises up at
one topological step interval. The node count at the radius of k, denoted as NC_k, is divided by the system

! The maximum radius range of the axial map of London is from 1 to 45, and the main range roughly starts from 1 to 20. See Fig.5 in
Park (2007).

’ The whole range of radius of a street means the range from the most localised radius, such as the topological radius 1, to the
maximum radius at which the street reaches all other streets within the system as a whole.

® This axial map of London is bounded with the north and south circular roads. See Hillier, 1996, p162.

8019:2



Proceedings: Eighth International Space Syntax Symposium

Santiago de Chile: PUC, 2012.

size, that is, the node count at the infinite radius, denoted as NC_n, as a way of scaling the NC_k values into

the range of 0 to 1 for all the lines of any a case.

Table 1 The number of axial line and the maximum axial radius of the study cases

Area Num of Axial Line Max Ax Radius
London 17,321 45
London Docklands 28,226 85
M25 100,218 126
Beijing 14,249 42
Chicago 30,535 40
Amsterdam 8,768 30
Nonlinear Fit
Response: Line A 17050, Predictor: Pred
Control Panel
Converged in Gradient
Criterion Current Stop Limit
Iteration 8 60
Obj Change 2.189745e-10 le-15
Relative Gradient 1.5965614e-6 0.000001
Gradient 4.7535278e-8 0.000001
Current
Parameter ValueLock ~SSE 0.001945355
a 25618130027 [] N 41
b 4.8044897496 [ |
Edit Alpha 0.050
Convergence Criterion 0.00001
Goal SSE for CL
Solution
SSE DFE MSE RMSE

0.001945355

39 4.9881e-5 0.0070626

Parameter Estimate ApproxStdErr
a 25.618130027 0.03392606
b 4.8044897496 0.03975937
Solved By: Analytic NR
Plot
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Fig. 1 The non-linear correlation between NC_Rk/NC_Rn and radius k of Line A (the axial reference number is 17050). The
two-parameter Weibull law was found.
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Then, the non-linear regression analysis was processed to approximate the relation between NC_k/NC_n
and radius k, that is, the embeddedness trajectory. Fig. 1 illustrates an example of Line A randomly selected
from the London axial map. An explicit form of the accumulated two-parameter Weibull function was
deduced from the data of Line A. The follow illustrates the formula of the Weibull function:

NC o,
NC _,

n (1)

where, Rk denotes the radius of k, NC_Rk denotes the node count value at the radius of k, NC_Rn denotes
the node count at the radius n, namely the infinite radius, and ‘a’ indicating the scale parameter and ‘b’
meaning the shape parameter.

The formula can be written in another way (see formula 2). This demonstrates that the node count of Line A
at a certain radius k is the production of the size of the system and the radius k.

b
Rk
-(=9)
a

NC . =NC . x(l-e °) N

The cumulated two-parameter Weibull fit was then tested for each axial line of each case in the software of
MATLAB, in order to see whether the Weibull law can be found for all those individual axial lines, and if so,
estimate the two parameters of ‘a’ and ‘b’. Table 2 sums up the goodness of fit, expressed by the R-square
of the non-linear regression model, of each case, and the corresponding two parameters, respectively; Fig. 2
demonstrates the distribution patterns of the R-square values, as well as the two parameters of ‘a’ and ‘b’ of
each case, respectively. The axial lines of all the cases, except for the district of the London Docklands, have
the R-square above 0.99. In particular, 99.2% axial lines of London, 82% lines of M25, 69% lines of Beijing
and 67% Amsterdam have the R-square above 0.999. The outlier of the London Docklands, the newly
developed district of East London, also has 82% lines with the R-square above 0.99, and 100% lines with the
R-square above 0.978. The correlations are still very strong, although not perfect. It can be suggested that all
the lines in those six cases have the two-parameter Weibull law relation between node count Rk and radius,
within the whole range of radius. In other words, the two-parameter Weibull law can be used to
approximately describe the topological embeddedness trajectory — from the local to the global — of each line
in those six cases.

8019:4



Proceedings: Eighth International Space Syntax Symposium
Santiago de Chile: PUC, 2012.

Table 2 The R-square of the non-linear correlation between node count and radius, as well as the parameters of ‘a’ and ‘b’ of each
study case, based on axial maps.

Area Max_R2 Mean_R2 Min_R2 Max_a | Mediana Min_a Max_b Median b Min_b
London 1 0.999 0.997 30 16.6 10.3 6.17 3.35 2.15
London

Docklands 1 0.994 0.978 66 29.3 21.6 6.94 2.74 1.47
M25 1 0.999 0.996 82.3 47.2 30.4 5.38 2.92 2.11
Beijing 1 0.999 0.995 29.9 15.8 10.2 6.36 3.33 2.07
Chicago 1 0.997 0.993 21.7 9.35 5.8 9.61 3.51 1.95
Amsterdam 1 0.999 0.993 18.9 11.3 6.9 8.92 4.12 2.56

Then, we further examined the metric embeddedness trajectory — meaning how each segment is
progressively embedded into the whole network in terms of it metric distance to all other segments — by
analysing the segment models of London and Beijing, the two geometrically contrasting cities, one of which
visually shows an irregular layout, and the other seems to be an orthogonal structure. The two cities also
have the different numbers of segments (London with 61,059 segments and Beijing with 43,523 segments)
and the different maximum metric radii — meaning the largest metric distance between any pair of segments
— of the system (London with the maximum radius of 32,500m and Beijing with the maximum radius of
53,500m). Since London has much more segments, but has much lower maximum radius, it demonstrates
that the segments in London, on average, are metrically closer to each other, and so that London in general
is more metrically integrated than Beijing. Can we indentify the similar law influencing the metric
embeddedness trajectory in these two geometrically different cities?
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99.5% 26.900 99.5% 5.3900 99.5% 1.0000
97.5% 24.700 97.5% 4.8900 97.5% 1.0000
90.0% 21.800 90.0% 4.2800 90.0% 1.0000
75.0% quartile  19.300 75.0% quartile  3.8000 75.0% quartile  1.0000
50.0% median  16.600 50.0% median  3.3500 50.0% median  1.0000
25.0%  quartile  14.400 25.0%  quartile  2.9900 25.0%  quartile  0.9990
10.0% 12.900 10.0% 2.7520 10.0% 0.9990
2.5% 11.900 2.5% 2.5500 2.5% 0.9990
0.5% 11.300 0.5% 2.4000 0.5% 0.9980
0.0% minimum  10.300 0.0% minimum  2.1500 0.0% minimum  0.9970
Moments Moments Moments
Mean 17.023226 Mean 3.4478142 Mean 0.9997128
Std Dev 3.4160655 Std Dev 0.6073477 Std Dev 0.0004759
Std Err Mean 0.0259561 Std Err Mean 0.0046148 Std Err Mean 3.6157e-6
upper 95% Mean 17.074103 upper 95% Mean 3.4568596 upper 95% Mean 0.9997199
lower 95% Mean  16.97235 lower 95% Mean  3.4387688 lower 95% Mean  0.9997057
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a. London
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100.0% maximum  66.000 100.0% maximum  6.9400 100.0% maximum  1.0000
99.5% 58.000 99.5% 6.0800 99.5% 0.9990
97.5% 49.500 97.5% 5.2800 97.5% 0.9990
90.0% 41.500 90.0% 4.1800 90.0% 0.9980
75.0% quartile  34.700 75.0% quartile  3.5700 75.0% quartile  0.9960
50.0% median  29.300 50.0% median  2.7400 50.0% median  0.9950
25.0% quartile  26.700 25.0% quartile  1.8600 25.0% quartile  0.9920
10.0% 24.900 10.0% 1.7200 10.0% 0.9870
2.5% 23.500 2.5% 1.6200 2.5% 0.9840
0.5% 22.700 0.5% 1.5500 0.5% 0.9830
0.0% minimum  21.600 0.0% minimum  1.4700 0.0% minimum  0.9780
Moments Moments Moments
Mean 31.566694 Mean 2.8380305 Mean 0.9935878
Std Dev 6.9519185 Std Dev 1.0363533 Std Dev 0.0039279
Std Err Mean 0.041379 Std Err Mean 0.0061686 Std Err Mean 2.338e-5
upper 95% Mean 31.647799 upper 95% Mean 2.8501212 upper 95% Mean 0.9936336
lower 95% Mean  31.485589 lower 95% Mean  2.8259399 lower 95% Mean  0.9935419
N 28226 N 28226 N 28226

b. the London Docklands

Fig. 2 The distribution patterns of the R-square values, as well as the two parameters of ‘a’ and ‘b’ of the Weibull fit of these
six cases (London, the London Docklands, M25, Beijing, Amsterdam and Chicago, based on the axial maps) (continued)
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d. Beijing

Fig. 2 The distribution patterns of the R-square values, as well as the two parameters of ‘a’ and ‘b’ of the Weibull fit of these
six cases (London, the London Docklands, M25, Beijing, Amsterdam and Chicago, based on the axial maps) (continued)
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f. Chicago

Fig. 2 The distribution patterns of the R-square values, as well as the two parameters of ‘a’ and ‘b’ of the Weibull fit of these
six cases (London, the London Docklands, M25, Beijing, Amsterdam and Chicago, based on the axial maps)
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As for each segment as a root space, we explored the mathematical relation between node count and
metric radius, within the range of 500m to the maximum metric radius of that segment, equal to the
maximum metric distance between the root segment to all other segments. The metric radius discretely
increases at an interval of 500m. We use the discrete radii, because the segments are encountered in a
discrete way, when we process the segment model in the DepthMap. Like the axial line analysis conducted
for those six cities/districts, the cumulated two-parameter Weibull fit between node count Rk and radius k
was tested for each segment of London and Beijing in the software of MATLAB, in order to explore whether
the Weibull law can be found for all the segments, and if so, estimate the two parameters of ‘a’ and ‘b’.

Table 3 sums up the goodness of fit values, expressed by the R-square of the non-linear regression model, of
London and Beijing, and their two parameters, respectively; Fig. 3 illustrate the distribution patterns of the
R-square values, as well as the two parameters of ‘a’ and “b. London has 73% segments with the R-square
above 0.999, and 99.97% with the R-square above 0.99; and the minimum R-square is 0.984. Beijing has 30%
lines with the R-square above 0.99, and 100% lines with R-square above 0.9; and the minimum R-square is
0.924. Although the correlations in the case of Beijing are relative worse than that of London, they are still
strong, because the R-square is larger than 0.924. It can be suggested that all the segments in London and
Beijing have the two-parameter Weibull relation between node count Rk and metric radius k, within the
whole range of metric radius. This demonstrates that the two-parameter Weibull law can be applied to
statistically capture the metric embeddedness trajectory of each segment in the two contrasting cities.

Table 3 The R-square of the non-linear correlation between node count and radius, as well as the parameters of ‘a’ and ‘b’ of London
and Beijing, based on segment models.

City Max_R2 Mean_R2 Min_R2 Max_a Median a Min_a Max_b Median b Min_b
London 1 0.999 0.984 18000 11100 7540 3.41 2.34 1.64
Beijing 0.999 0.973 0.924 26600 15900 11900 3.63 2.55 1.87
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0.5% 12100 0.5% 2.1400 0.5% 0.92900
0.0% minimum 11900 0.0% minimum  1.8700 0.0% minimum  0.92400
Moments Moments Moments
Mean 16166.949 Mean 25712619 Mean 0.9728166
Std Dev 2936.0923 Std Dev 0.1946498 Std Dev 0.02018
Std Err Mean 14.073765 Std Err Mean 0.000933 Std Err Mean 9.673e-5
upper 95% Mean 16194.533 upper 95% Mean 2.5730906 upper 95% Mean 0.9730062
lower 95% Mean 16139.364 lower 95% Mean  2.5694331 lower 95% Mean  0.972627
N 43523 N 43523 N 43523

b. Beijing

Fig. 3 The distribution patterns of the R-square values, as well as the two parameters of ‘a’ and ‘b’ of the Weibull fit of London
and Beijing, based on the segment models.
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THE SPATIAL PARAMETERS CONSTRICTING THE SPATIAL STRUCTURING OF URBAN NETWORK

Then, what is the meaning of the two parameters of ‘a’ and ‘b’ in the above analyses? Mathematically, the
scale parameter of ‘a’ determines the range of the possible values of NC_Rk we expect to see. The larger the
scale parameter of ‘a’, the more spread out of the distribution. The parameter of ‘b’ is the shape parameter
that influences the shape of the distribution of NC_Rk. Table 2 & 3, based on either the topological analysis
and the metric analysis respectively, show that the median of the parameter of ‘a’ varies more widely case
to case, but the median of the parameter of ‘b’ varies within a relative narrower band. As for each case, the
scale parameter of ‘a’ varies more widely, but the shape parameter of ‘b’ varies more narrowly around the
median. This suggests that the shape of the curve (Fig. 1) denoting the embeddedness trajectory in fact is
constricted within a relative narrower range, although the spread of NC_Rk varies much. However, do the
two parameters have any relations with the other basic syntactic measures?

As for the axial maps of those six cases, we choose the basic geometric and syntactic variables of line length,
connectivity, total depth R3, total depth Radius-radius4, total depth Rn, mean depth R3, mean depth Radius-
radius, mean depth Rn, integration R3, integration Radius-radius and integration Rn. Then, the linear
regression analysis of each basic geometric or syntactic variable and the parameter of ‘@’ or ‘b’ was
conducted for each case respectively, as a way of picking out which syntactic factor heavily impacts on the
two parameters. The result shows the parameter of ‘a’ has a nearly perfect linear correlation with mean
depth Rn for each case. Fig. 4 shows the correlation scattergram of each case, of which the x-axis denotes
mean depth Rn and the y-axis indicating the parameter of ‘a’. The R-square values of London, the London
Docklands, M25, Beijing, Chicago and Amsterdam, respectively, are 0.998, 0.995, 0.998, 0.997, 0.996 and
0.994. When we further compared the value range on the x-axis with that on the y-axis, it demonstrated
that the mean depth Rn and the parameter of ‘a’ almost vary within the similar range in each case. And
meanwhile, since the ‘@’ is the scale parameter of the Weibull law, it can be multiplied by a scale factor to be
adjusted to approximate the mean depth Rn. To a large extent, it can be concluded that the mean depth Rn
of each axial line is in fact the parameter of ‘a’.

However, we didn’t indentify the strong correlation between those basic geometric/syntactic variables and
the parameter of ‘b’. But this parameter controls the curve shape (Fig.1) that is mathematically related to
the change rate of node count. We then propose a conjecture that the shape parameter of ‘b’ is associated
with the pace at which each line is topologically embedded into the surroundings, denoted as topo-
embeddedness pace. The topo-embeddedness pace (or change rate of node count) is calculated by the
following formula (Yang & Hillier, 2007).

Iog(NC _Rk) B Iog(NC _Rk—l)

Emd (Rk) = log(k) — log(k —1) 8

where, Emd(Rk) denotes the topo-embeddedness pace at the radius of k, NC_Rk indicates the node count at
the radius of k, and k means the radius.

* The radius-radius is equal to the mean depth of the most integrated line within a system, and the edge effect that the syntactic
analysis of the spaces located at the edge system would be biased by their location can be alleviated at the radius-radius (Hillier, 1996).
London, the London Docklands, M25, Beijing, Amsterdam and Chicago, respectively, have the radius-radius of 10, 19, 27, 10, 7 and 6.
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The average topo-embeddedness pace of any an axial line is then defined as the mean of a whole range of
the topo-embeddedness Rk values, where k starts from 2 to the maximum radius of that axial line. The linear
regression analysis of the parameter of ‘b’ and the average topo-embeddedness pace was then carried out.
Table 4 shows the R-square values of those six cases, and Fig. 5 illustrates their correlation scattergrams.
London, the London Docklands, M25, Beijing, Chicago and Amsterdam, respectively, have the R-square of
0.717, 0.872, 0.751, 0.748, 0.801 and 0.539. This demonstrates that the parameter of ‘b’ has a strong
positive correlation with the average topo-embeddendess pace in each case. It suggests that the parameter
of ‘b’ impacts on the average pace at which the axial lines are topologically embedded into the contextual
structures. In other words, the average embeddedness pace is another major spatial parameter influencing

the topological embeddedness trajectory.

Table 4. The R-square of the linear correlation between ‘a’ and mean depth Rn, between ‘b’ and average embeddedness pace, as well
as between ‘@’ and ‘b’, based on the axial maps.

Area R2 of a and MD R2 of b and Avg Emd R2 ofaand b
London 0.998 0.717 0.772
London Docklands 0.995 0.872 0.612
M25 0.998 0.751 0.756
Beijing 0.997 0.748 0.663
Chicago 0.996 0.801 0.662
Amsterdam 0.994 0.539 0.463
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b. The London Docklands

Fig. 4 The linear correlation between ‘a’ and mean depth Rn (LEFT) and between ‘b’ and the average embeddedness pace
(RIGHT), based on the axial maps of London, the London Docklands, M25, Beijing, Chicago and Amserdam, respectively
(continued).
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Fig. 4 The linear correlation between ‘a’ and mean depth Rn (LEFT) and between ‘b’ and the average embeddedness pace
(RIGHT), based on the axial maps of London, the London Docklands, M25, Beijing, Chicago and Amserdam, respectively
(continued).
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Fig. 4 The linear correlation between ‘a’ and mean depth Rn (LEFT) and between ‘b’ and the average embeddedness pace
(RIGHT), based on the axial maps of London, the London Docklands, M25, Beijing, Chicago and Amserdam, respectively.
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In the light of the results of the above topological analyses, we further give another conjecture that the
parameter of ‘a’ and ‘b’ of the Weibull relation between node count Rk and metric radius k, based on the
segment models, respectively are related to the metric mean depth (meaning the average metric distance
from a root segment to all other segments) and metric embeddedness pace (meaning the pace at which a
root segment is metrically embedded into the contexts). The metric embeddedness pace is computed by the
following formula (Yang & Hillier, 2007).

log(NC _,)—log(NC _, )

Emd (k.) = =150 —Tog(k—o)

where, Emd(k,o) denotes the metric-embeddedness pace at the radius of k, NC_k indicates the node count
at the radius of k, and o means the interval of increasing radius.

The average metric embeddedness pace of any a segment is then defined as the mean of an entire range of
the metric embeddedness Rk, where k starts from 500m to the maximum metric radius of that segment and
the interval o is 500m. As for the cases of London and Beijing, the average metric embeddedness pace and
the metric mean depth Rn values of each segment were given by their segment models respectively. The
linear regression analyses of the parameter of ‘a’ and metric mean depth Rn, and of the parameter of ‘b’
and the average metric embeddedness pace were respectively carried out for each case city. Table 5 shows
the R-square values of the above correlations of London and Beijing, and Fig. 5 respectively illustrates their
correlation scattergrams.

Table 5. The R-square of the linear correlation between ‘a’ and mean depth Rn, between ‘b’ and average embeddedness pace, as well
as between ‘@’ and ‘b’, based on the segment maps of London and Beijing.

City R2 of a and MD R2 of b and Avg Emd R2 ofaand b
London 0.964 0.665 0.578
Beijing 0.961 0.401 0.234
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Fig. 5 The linear correlation between ‘a’ and mean depth Rn (LEFT) and between ‘b’ and the average embeddedness pace

(RIGHT), based on the segment models of London and Beijing, respectively.
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On one hand, the parameter of ‘a’ has a strong positive correlation with metric mean depth Rn in the cases
of London (with an R-square of 0.964) and Beijing (with an R-square of 0.961). This suggests that the scale
parameter of ‘a’ of each segment is heavily influenced by the metric mean depth Rn, that is, the average
metric distance from that segment to all other segments. Since the parameter of ‘a’ is the scale parameter,
it can be adjusted to approximate the metric mean depth Rn. In this sense, it can be suggested that the
global metric mean depth functions as the scale parameter of the Weibull law governing the metrically
structuring of urban networks of London and Beijing.

On the other hand, the parameter of ‘b’ has a moderate positive correlation with the average metric
embeddedness pace in the cases of London (with an R-square of 0.665) and Beijing (with an R-square of
0.401). This demonstrates that to some extent, the shape parameter of ‘b’ is affected by the average metric
embeddedness pace, that is, the average pace at which each segment is metrically embedded into the
contextual structure. Mathematically, the parameter of ‘b’ in fact controls the curve shape of the
scattergrams plotting node count Rk against the metric radius of k. To some extent, it can be interpreted
that the metric embeddedness pace serves as the shape parameter of the Weibull law governing the
metrically structuring of London and Beijing.

In general, the above topological and metric analyses demonstrate that the scale parameter of ‘a’ can be
treated as the average topological/metric distance from each root street, represented by axial line or
segment, to all other streets within a system; and the shape parameter of ‘b’ can be interpreted as the
average pace at which each street is topologically/metrically embedded into the whole structure of urban
network.

THE LOCAL AND THE GLOBAL RELATION

Then, does the embeddedness trajectory, governed by the two-parameter Weibull law, from the local to the
global, affect the spatial configurations at the local or medium scales? We further theoretically investigate
the embeddedness trajectory pattern by examining the scattergram of plotting node count Rk, denoted as
NC_k, on the vertical axis against radius, indicated as Rk, on the horizontal axis, as Fig. 6 shows. If the radius
increases from Rk to Rk+s (s denotes the minor increase of radius), the node count value simultaneously
goes up from NC_k to NC_k+s. As a result, the increase of total depth approximates to the value of (NC_k+s
—NC_k) * Rk, equal to the area of the shape B1B20102, if s is small enough5. Then, the total depth Rn is the
sum of (NC_k+s — NC_k) * Rk, as k rises up from 1 to n. Thus, the total depth Rn is equal to the area of the
shape of A1A2A3, coloured in yellow. As for each axial line, the yellow area represents the topological total
depth Rn; as for each segment, the yellow area indicates the metric total depth Rn. This shows that the
topological/metric total depth Rn is in fact heavily influenced by the embeddedness trajectory from the
most localised to the most globalised radius. And the total depth at any a radius of k is equal to the area of
the shape A1B101 that is also constrained by the curve A101 representing the embeddedness trajectory
from the radius of 1 to k. This by and large demonstrates that the total depth Rk — the basic syntactic feature
— of each line or segment is determined by the embeddedness trajectory pattern at the radius of k.

> In the axial analysis, the minimum value of ‘s’ is one step; in the segment analysis, the minimum value of ‘s’ is approximately equal to
the average segment length of a system.
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As we discussed in the previous section (see formula 2), node count Rk has the two-parameter Weibull
relation with radius, so that the embeddedness trajectory pattern at k — meaning the trajectory on which a
root space is connected to the contextual spaces from the radius of 1 to k — is heavily influenced by the two
spatial parameters: the global mean depth and the average embeddedness pace. Since total depth Rk of
each space is shaped by the embeddedness trajectory pattern at k (as we discussed in the previous
paragraph), it also suggests that total depth Rk of each space is impacted on by the global mean depth and
the average embeddedness pace. In this sense, it demonstrates that to a large extent, the spatial
configuration of each space at the local and medium radii (smaller than the largest radius of the whole
system) is constrained by the spatial configuration of the whole urban network.
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Fig. 6 The calculation of total depth Rn can be illustrated and interpreted by plotting node count against radius
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Fig. 7 The scattergram of node count against radius, governed by the two-parameter accumulated Weibull law, in which the
parameter ‘@’ is fixed, but the parameter ‘b’ varies from 1.5 through 3 and 6 to 12. (Line_b1.5 means the curve with the ‘b’ of
1.5; Line_b3 denotes the curve with 3; Line_b6 indicates the curve with 6, and Line_b12 means the curve with 12.
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In addition, when the topological data of the six cases were further examined, the two global syntactic
factors, as the parameters of ‘@’ and ‘b’ of the Weibull law, seemed to have a relative strong positive
correlation (see Table 4), London, the London Docklands, M25, Beijing, Chicago and Amsterdam,
respectively, have the R-square values of 0.772, 0.612, 0.756, 0.663, 0.662 and 0.463. Statistically speaking,
larger ‘@’ is, higher ‘b’ is. This implies that larger topological mean depth Rn is, faster average embeddedness
pace (or average change rate of node count) is. However, we expected that the faster embeddedness pace
was associated with smaller topological mean depth Rn, because we intuitively assumed the faster
embeddedness pace also indicated the more spaces would be encountered at the lower radii. Why the
faster average embeddedness pace is related to the larger mean depth Rn?

The parameter of ‘b’ is empirically higher than 1.47, as Table 4 shows. Theoretically speaking, when the
parameter of ‘b’ of the Weibull law is higher than the value around 1.5, the curve of node count against
radius would have the lower slopes at the lower radii, and this indicates the relative slower change rate of
node count (or embeddedness pace) at the lower radii (Fig. 7). When the parameter of ‘b’ increases, say
from 1.5 through 3 and 6 to 12, the embeddedness pace at more number of lower radii would slower, and
the embeddedness pace at the medium radii would become much faster (Fig. 7). This means that less spaces
would be encountered at the lower radii, but more spaces would be encountered at the higher radii, and so
that the mean depth Rn would become larger. But the average embeddedness pace from the local to the
global could become higher, because the embeddedness pace at the medium radii would become much
faster. This is the reason why the faster average embeddedness is statistically associated with the larger
topological mean depth Rn. And meanwhile, it also suggests that the shape parameter of ‘b’ captures more
complicated change rate of node count from the most localised to the most globalised radius, which needs
further study in the future.

And as we discussed the previous section, Table 4 also shows that the shape parameter of ‘b’ is constrained
within a narrower range, although the scale parameter of ‘a’ varies widely case to case or in one case. This
suggests that the shape of the topological embeddedness trajectory does not vary much, and so that it
implies that the spatial structuring of urban network is not random process, but is limited within a narrow
range of possibilities, as Hillier (1996) argued in Chapter 8 of Space is the Machine.

As a result, when we normalise the syntactic values to compare them across the different sized systems, one
of the strategies is to divide the syntactic values produced in the different systems by those generated in
a/the reference system set within a whole range of possibilities of urban network. In the book of The Social
Logic of Space, the syntactic value (eg. relative asymmetry6) of the real urban system is divided by the
syntactic value (eg. relative asymmetry) of a ‘diamond-shaped’ pattern7 to normalise that value of the real
urban system. When we investigated the topological embeddedness trajectory of the ‘diamond-shaped’
patterns of those six cases, the two-parameter Weibull law was also found respectively.

® See Hiller & Hanson, 1984, p108.

" The ‘diamond-shaped’ pattern indicates ‘a justified graph in which there are k spaces at mean depth level, k/2 at one level above and
below, k/4 at two levels above and below, and so on until there is one space at the shallowest (the root) and deepest points’. See Hillier
& Hanson, 1984, p111-12.
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Table 6 the parameters of ‘a’ and ‘b’, denoted as D_a and D_b, of the six diamond-shape patterns, as well as the median of the mean
depth Rn of those six cities.

Area D_a D_b Mean of mean depth Rn
London 15 10.6 15.9

Beijing 15 10.6 15

Chicago 16 11.3 9.5
Amsterdam 14 9.8 10.9

London Docklands 16 11.3 28.6

M25 18 12.8 42.5

Table 6 shows the parameters of ‘a’ and ‘b’, denoted as D_a and D_b, of the six diamond-shape patterns, as
well as the median of the mean depth Rn of those six cities, respectively. First, the structuring of the
‘diamond-shape’ is also governed the two-parameter Weibull law, which is the same as the spatial
structuring of the real urban space. Second, the parameter of ‘a’ — approximating the mean depth Rn — of
the ‘diamond-shape’ patterns of London, Beijing, Amsterdam and Chicago are, respectively, close to the
median of the mean depth Rn values of the corresponding cities, although the parameter ‘a’ values of the
London Docklands and M25 are, respectively, even smaller the minimum of the mean depth Rn values of the
two regions. This demonstrates that the ‘diamond-shape’ pattern, to a large extent, lies within a range of
possibilities of the spatial structuring of the real cities. To some extent, this explains why the D-value (the
relative asymmetry of the ‘diamond-shape’ pattern) works well in normalising the relative asymmetry of the
real cities. However, the further study on the newly developed regions (such as the London Docklands) and
the large-scale metropolitan region (such as the M25 comprising urban and rural areas) are needed for
better understanding the comparison of the different systems in the light of the two-parameter Weibull law.

DISCUSSION

This paper suggests that the whole embeddedness trajectory of any an individual street is governed by the
Weibull law with two parameters, one of which is the global mean depth and the other is the average
embeddedness pace. On one hand, when any an individual street of a city is progressively connected to all
other streets from the most localised to the most globalised level, the whole network of the city would be
generated at once. This suggests that the emergence of urban network as a collective entity results from the
embeddedness trajectory of all the individual spaces that constitute the urban network. In fact, this is a
basic configurational view used to understand urban structure as a whole. As Hillier (1996: xii) clarified,
‘configuration means the relations taking account of other relations’. The justified graph8 of each individual
space visualises the configutional relation of that space, as the root space, and all the other spaces, which in
fact reflects how the root space is progressively connected to all other spaces with an increase of radius,
termed as the embeddedness trajectory in this paper. Once any a justified graph is constructed, the whole
network, in spite of that it is observed from the point of the view of the root space, is then created

& The difference in the configurational relation between spaces can be easily found by justifying the graph in the following way: a
selected node, as the root, is put on the baseline, the nodes one depth away from the root are horizontally aligned immediately above
the root, the nodes two depth away from the root above those one depth away, and so on until all other nodes are taken into account
in terms of their depth from the root (Hillier & Hanson, 1984).

8019:22



Proceedings: Eighth International Space Syntax Symposium
Santiago de Chile: PUC, 2012.

simultaneously. This reveals a relationship between the emergence of the whole urban network and each
individual space.

In this sense, the spatial structuring of the whole urban network is in fact determined by the whole
embeddedness trajectory of any an individual space. Since each individual embeddedness trajectory is
governed by the two-parameter Weibull law, the spatial structuring of the whole network is also shaped by
the two-parameter Weibull law, and meanwhile impacted on by the two parameters as the two spatial facts:
average depth from all spaces to all other spaces, as well as the average pace at which the individual spaces
are topologically or metrically embedded into the whole network.

On the other hand, it demonstrates that the global configurational features of each individual space, such as
those measured by global mean depth and average embeddedness pace, also are constraining parameters
that determine the configurational patterns at the local and medium scale, such as that generated by total
depth at a certain radius of k, according to the formula (1) and Fig. 5. The embeddedness trajectory from
the most localised radius to a specific radius of k is constricted by the global configuration of urban network
resulting from the embeddedness trajectory of each individual space. This supports Hillier’s part-whole
theory that the whole urban grid emerging from the aggregation of the local building forms makes the local
places (Hillier, 1996). This enables us to better understand the localised configurational features in the light
of the whole urban network.

In addition, the concept of the embeddedness trajectory, governed by the two-parameter Weibull law, also
offers a methodological tool for thoroughly investigating the relations between the spatial sub-structures at
different scales, ranging from the most localised to the most globalised scale. The features of the
parameters of ‘a’ and ‘b’, as well as their relations need to be further studied on more empirical cases, in
order to more accurately understand the spatial structuring of urban network.
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